Open vs. Closed Source Software:
Two Co-Existing, Copyright-Based
Kinds of Organizations

Sebastian v. Engelhardt *

July 4, 2007

WORK IN PROGRESS, COMMENTS ARE WELCOME. PLEASE DO NOT QUOTE.

Abstract

The software industry faces the co-existence of ‘closed source soft-
ware’ (CSS)—or: ‘proprietary’—and ‘open source software’ (OSS). The
latter is developed by communities incl. hobbyists as well as compa-
nies, and the source code, the human-readable recipe of a software, is
’open’ (disclosed). OSS and CSS are different kinds of institutional ar-
rangements, distinguished by their use of copyright law, codified in the
software licenses. These licenses therefore lead to different allocation
of intellectual property rights and different modes of organization.
The different institutional arrangements represent different strategies
in use of the resource software, source code respectively.

The paper outlines an analytical framework in order to analyze the
co-existence of CSS and OSS. The economic characteristics of software
and transaction costs explain, why CSS and OSS co-exist, as they are
two different solutions for the same internalization problem. OSS vs.
CSS is about the efficient use of a non- and anti-scarce resource, be-
cause of positive external effects. Some of this effects can not be inter-
nalized by market based allocation of property rights. CSS, as based
upon exclusive use of source code, is limited in its scope of coopera-
tion (number of members), while OSS is a non-specific cooperation
contract offered to anybody and therefore has to minimize exclusive
rights down to the level of passively controlled projects.

“Friedrich-Schiller-University Jena, Email: Sebastian.Engelhardt@wiwi.uni-jena.de

Contents

1 Introduction
2 The Analytical Framework
2.1 Modeling an Economic Resource
2.2 Definition of Scarce, Non- and Anti-Scarce
2.3 Modeling Property Rights
3 The Resource Software
3.1 About the Economic Characteristics of Software
3.2 Software as a Non- and Anti-Scarce Ressource
4 Copyright and the Non- and Anti-Scarce Resource Software
4.1 Optimal Allocation and Optimal Licenses
4.2 Ex Ante Transaction Costs and Incomplete Knowledge
4.2.1 Incomplete Knowledge
4.2.2 Ex Ante Transaction Costs and Limits of Internaliz-
ability ...
4.3 Ex Post Transaction Costs and the Problem of Not Exclu-
sively Separable Rights
5 Two Co-Existing Production Modes: OSS vs. CSS
5.1 CSSvs.OSSLicensesuiiininnenn..
5.2 ThePrincipleof CSS
53 ThePrincipleof OSS
6 Outlook
References

AN O U

oo oo

12
12
15
15

15

19

23
24
25
26

32

32

1 Introduction

“If the main allocative function of property rights is the in-
ternalization of beneficial and harmful effects, then the emer-
gence of property rights can be understood best by their as-
sociation with the emergence of new or different beneficial
and harmful effects.”

H. Demsetz, Towards a Theory of Property Rights, p 350

The software industry is characterized by the co-existence of two copyright-
based types of production modes: Beside proprietary software there exists
also so called open source software. Open source software (OSS) is developed
by communities (incl. hobbyists as well as companies) and the source code—
the human-readable recipe of a software program—is ‘open’ (disclosed), which
means that everybody has access to the software and its source code and the
right to read, modify, improve, redistribute and use it. Firms like IBM, HP,
or Sun Microsystems are involved in the OSS community as well as OSS
distributors! like RedHad or Novell’s SUSE. One can interpret the produc-
tion modes of CSS vs. OSS as being different kinds of “institutional arrange-
ments” (Davis & North 1971), and distinguish them by their different use
of copyright law, codified in the software licenses. This leads to different
allocations of intellectual property rights (IPRs) and different modes of or-
ganization. The institutional arrangements represent strategies in use of the
resource software (source code respectively) and have specific assets and draw-
backs regarding individual and firm level as well as social welfare.

The property rights theory mostly concentrates on negative external ef-
fects and the widely discussed tragedy of the commons—as well as the tragedy
of the anti-commons (Heller 1998)— is a negative externality story, a scarce
resource story. This focus seems to draw back to Demsetz’ seminal article:
Although he points out in the beginning, that it is about “internalization
of external costs and benefits” (Demsetz 1967, p 349), he then focuses on
negative externalities (Demsetz 1967, pp 350 ff.). But the issue discussed in
this paper is about a non-scarce, to some extent even an anti-scarce resource.
My argument is, that property rights regarding some kind of non-rival and
anti-rival applications of software (or: of the source code) are not exclusively

!Open source software distributors sell complementary goods, thus they collect and opti-
mize given open source software and offer further services like support and maintenance.

separable, and this leads to a control problem—a de facto dilution of exclusive
ownership—if one wants to create (or: enable) and internalize these positive
effects via market transactions. Therefore I show, that neither non- nor anti-
rivalry in use as such, are reason for the dichotomy in the software industry,
as a perfect market would lead to a welfare optimal allocation of non- and
anti-rival applications. In a next step, optimal defined, copyright based li-
censee agreements are derived from this optimal allocation in order to show,
that an optimal allocation of property rights is theoretically possible as well.
Based on this, it is argued, that neither limits in market trading because of ex
ante transaction costs (search and bargaining costs), nor incomplete knowl-
edge can reason such a crucial internalization problem, that this could ex-
plain the co-existence of CSS and OSS. Hence, the argument s, that because
of ex post transaction costs some of the (optimal defineable) property rights
are not exclusively separable, which leads to a control problem, i.e. a de facto
dilution of exclusive ownership. The principle of CSS and OSS are therefore
interpreted as being two different kinds of solution for this, two different
governance structures. The former maximizes control and exclusive owner-
ship while the latter minimizes control and exclusive ownership.

This paper is part of a general analysis, that is based on the view, that the
value of the economic resource software (just as any resource) is determined
by its applicability, thus by the set of possible strategies in use, i.e. by the
(expected) payoff of those strategies. The set of strategies itself is limited by

1. the technical-physical characteristics of the resource.
2. the institutional boundaries, e.g. (intellectual) property rights.

3. the traits and conducts of the other players (e.g. express of preferences
in demand, skills they may offer, strategies they use, etc.).

Of course, there are interdependencies, e.g. the strategies in use of a resource
are limited by property rights institutions (Libecap 1989) and by its technical-
physical attributes, but the latter determine the kind of external effects to be
internalized, and transaction costs influence the scope of internalization and
property rights institutions (Langlois 2002, Libecap 2004); institutions itself
are result of human action and interaction (Aoki 2007, 2001), etc. Keeping
in mind that such interdependecies exist, the analysis consists of consecu-
tive building blocks. Hence, the paper at hand—providing a first draft of

the analysis—is structured as follows: After an introduction to the analyti-
cal framework (section 2), the analysis starts with the characteristics of soft-
ware (section 3.1) and explains why a source code is a non- and anti-scarce
resource (section 3.2). In section 4 the role of IPRs—namely copyright—
with respect to the non- and anti-scarce resource software (source code) is
discussed, and—as already mentioned above—it will be argued, that control
problems caused by ex post transaction costs inhibit optimal property right
allocation, as some of them are not exclusively separable (section 4.3). In sec-
tion 5 I turn to the two different production modes that have evolved and
established in the software industry. Both principles are interpreted as being
two different solutions, that try to deal with the problem of non exclusively
separable property rights. Both have their assets and drawback and their
limits. This gives reason to the fact, that OSS and CSS co-exits. With this
background, the next step should be to take into account the traits and con-
ducts of the other players. This yields a modeling of the two competing and
co-existing, types of institutional arrangement, based on the individual OSS
vs. CSS firm strategy decision. Section 6 provides a short outlook to that.

In general, focusing on institutional aspects of (open source) software is
to some extent the complement to research dealing with the motivations
of open source contributors: software is produced within institutional ar-
rangements supporting different kinds of (innovative?) activities, supporting
this or that kind of behavior based on different motives. A sound survey
on motive-related as well as institutional aspects, theoretical and empirical
research respectively, can be found in Rossi (2006). Gehring (2006) presents
with his article on the “Institutionalization of Open Source Software” a brief
introduction on institutional aspects, including IPRs, organizations and net-
work standards as well as the code. Widely known is Weber (2004) with his
analysis on the “Success of Open Source”, documenting and examining the
collaborative methods in context of developing OSS. One should also men-
tion Wendel de Joode et al. (2003) in this context. (Of course, there is also
a broad range of literature dealing with topics on managing OSS projects
and/or governance problems and structures in OSS projects from a practi-

2Thus, a third important aspect related to this issue is research on open source and closed
source/proprietary software as different innovation systems (institutional arrangements
within innovations occur). See e.g. von Hippel & Von Krogh (2003), who point out, that
OSS is a mixed innovation model, they call it “private-collective” innovation model.

tioner’s perspective, mostly written from and for people involved in that
area.) An organizational economist’s view on Linux is provided by Franck
& Jungwirth (2001), and Brand & Schmid (2005) discuss the cooperation in
open source projects, based on a case study on the KDE project.’ They distin-
guish between types of organization, types of coordination and instruments
of coordination in order to describe how open source projects work. OSS
communities are often interpreted as being networks and networks are often
seen as a hybrid form between market and the firm, but Powell (1996) and
Benkler (2002) argue that networks are a separate kind of organization, not
a mixture. Especially the latter asserts that OSS is an example for commons-
based peer production, which is a new, third mode of production in the dig-
itally linked environment, and distinguishes this clearly from the property-
and contract-based modes of firms and markets. Garzarelli (2003) also points
out the uniqueness of OSS, arguing that its organizational characteristics are
‘out of the ordinary’ and can be explained by a combination of the organi-
zational theory on clubs with the theory of professions. Thus, most of the
literature concentrates on OSS and tends to express its uniqueness. An ex-
ception not dealing with OSS but focusing on institutional aspects is Engel
(2002), who interprets network standards to be institutions—see also Wey
(1999) about this—and argues that Microsoft’s Windows is an institution or-
ganizing markets for application software: in order to get access to a network
with a large installed base, software products need to be made compatible
with only one standard, i.e. Windows. Some authors even interpret code to
be a standard (Gehring, 2006, pp 67 ff, Lessig, 2006, 1999).

However, the paper at hand outlines an analytical framework to analyze
the different institutional arrangements of the software industry in an in-
tegrated way, i.e. OSS and non-OSS. The aim is to examine the lasting co-
existence of OSS and non-OSS with respect to the following research ques-
tions: How can the co-existence be explained and what can be learned about the
concepts of copyright-based ownership and active vs. passive control rights in this
context? Furthermore the analytical framework should be able to provides a
basis for answering a second question: Why and when do firms choose OSS or

*KDE (K Desktop Environment) is an open source graphical user interface (GUT). Together
with the GNOME desktop it is the likely most known desktop environment (and devel-
opment platform) for Linux and Unix workstations (Webpage: www.kde.org).

CSS, and what kind of dynamics can be derived from this?

2 The Analytical Framework

This section provides some definitions of the analytical framework used in
this paper. Although it was developed in order to analyze the resource ‘source
code’, the model can be used to analyze any kind of economic resource.

2.1 Modeling an Economic Resource

A resource can be broadly defined as a technically meaningful set of certain
element, e.g. a source code can be broadly defined as a technically meaningful
set of code lines. Therefore, in this model a given source code is described
as a set X. As X can be split up into subsets, there is a set of all subsets
PX)={A|ACX}.

Let y = f(Z,-) denote that Z € P(X) is used for an application y. The
‘use’ f(Z,-) is one of several possible forms of transformation of Z with or
without the use of other code lines, e.g. y = f(Z, W) would be an application
of the combined code line sets Z and W, which can be rewritten as y = f (V)
with V ={{ZUW}\ U} #0. However, y = f(Z) is possible as well.

Because of technical reasons, not for all Z € P(X) exist applications, the
trivial example is Z =0 € P(X). Additionally, there can be Z € P(X) with
multiple applications. This leads to the following:

Definition 2.1. The set of technically 7o meaningful subsets of X is
UX)={ZePX)|By=1(Z,)}. 1)
Definition 2.2. The set of technically meaningful subsets of X is
XX)={PXN\UX)} ={ZePX)|Iy=f(Z,)}. 2)

Notice, that several Z € X with Ay = (y1,...,9"), y* = f(Z,-), n > 2 can
exist (Z with multiple applications).

Definition 2.3. The corresponding set of applications of X is

YX)={y|y=/f(Z,),ZeX(X)}. 3)

As mentioned above, y = f(Z,) indicates, that Z might be but does not have
to be combined with other code. And, of course, it is also possible to replace
code lines. Thus, a general notation is

y=f(Z,)elf(2), f(V)} withV={ZUW}\ U} #0, Ze X(X),)

which yields
YX)={ylyel{f(2), fVB={/(2), fF(V}=Y(Z)uY (V). ©)

2.2 Definition of Scarce, Non- and Anti-Scarce

A scarce ressource is a ressource with rivalry in use. Thus, the resource X
is called a scarce resonrce with respect to Y C Y, if the use of Z € X for
application y € Y leads to rivalry in use, i.e.

Vy=/(Z,)|[X™ ={X\Z} S X]A[Y™(X™) cY(X)] (6)

A non-scarce ressource is a ressource with non-rivalry in use, this refers
to public and club/toll goods. Thus, the resource X is called a non-scarce
resource with respect to Y C Y, if the use of Z € X for application j € ¥
leads to 7o rivalry in use, i.e.

Vi=/f(Z,)eY|[X"* =X]A[Y™(X")=Y(X)])

An anti-scarce ressource is a ressource with anti-rivalry in use, i.e. the more
the ressource is used, the higher is the value of the ressource, and/or the
ressource itself increases due to use. Thus, the resource X is called a anti-
scarce resource with respect to Y C Y, if the use of Z € X for application
§ €Y leads to anti-rivalry in use, i.c.

Vi=f(Z) eV |[X"* 2X]A[Y(X"*) DY (X)] ®)

2.3 Modeling Property Rights

In a world with rational individuals having complete information and knowl-
edge, there would be bargaining and trade of each y € Y. Thus, transaction
costs, and incomplete information/knowledge, give reason to the fact that

property rights are defined and traded. Hence, the theoretical framework
has to contain a consistent modeling of (intellectual) property rights (as this
paper is on software, in the following I always refer to IPRs only, although
in principle the model can be applied to PRs and IPRs.)

Following e.g. Furubotn & Richter (2005), Eggertsson (1990), Hart &
Moore (1990), I broadly distinguish between the set of coordination rights
(usus and abusus) from the residual rights (usus fructus and alienation rights).
The complete set of rights is therefore defined as H = {H°UH"}, with H® as
the set of coordination rights, and H" as the set of residual rights. Let h € H
denote one property right and Y’ C Y the set of known applications of X.

At first, coordination rights are defined: The conjunction of a coordina-
tion right h¢ € H® with a resource X (h¢: X) leads to a distinction-criteria
between the applications that are covered by the IPR and those which are
not. Notice that there is no need to know the whole set of possible appli-
cations, as the distinction-criteria is like a selecting-rule » which tells one
whether any y € Y(X) is covered by the IPR or not: r:y — [0,1] Vy € Y.
This yields

he:X —{yeY'|r(y)=1}.)

For example, let h,, denote the vector of all usus rights, h, the vector of all
abusus rights, and h, 5, all usus and abusus rights. This yields e.g.

h,: X —{yeY'|y=f(Z)}={Y(Z)}, (10)
h, o : X —{yeY |y=f(V)}={Y(V)} (11)

Next step is to define the residual rights, where I have to distinguish between

usus fructus and alienation rights: Let h denote the vector of all usus fructus
rights, and 7t the payoff gained from y, then

hf:X—>{7t|7t:f(y),y€Y/}. (12)

The right to transfer IPRs of a resource has to be modeled in a slightly dif-
ferent way, as it is in a sense a ‘right on rights’. Let »” denote the alienation
right regarding 4. An individual holding an alienation right with respect to

h can therefore decide wether to keep on holding this right, or transfer it, i.e.
do not hold it anymore:

0 if right b is transferred,

b = “decision’ o h = { (13)

b if right b is not transferred.

Let h” be the vector of all alienation rights. Holding alienation rights on a
resource X is then formally given by

XD ¢ [0,1]-hl: X
h": x = : = : . (14)
W x [0,1]-h": X

Notice, that there exist “recursive” alienation rights. A recursive alienation
right is the right to transfer an alienation right. This means, that

Ik e (b, b st [h’e =" with b € {b'...h"}, b ¢h”] L (15)

3 The Resource Software

3.1 About the Economic Characteristics of Software

Software is a good with particular economic characteristics leading to spe-
cific traits of software markets regarding e.g. the cost function, the question
of compatibility and IPRs. To simplify, one can subsume the economic prop-
erties of software as follows (for more details see von Engelhardt 2006):

Software is a digital good and therefore recombinant: software products are
“cumulative and emergent—new digital goods that arise from merging ante-
cedents have features absent from the original, parent digital goods” (Quah
2003, p 19) which tends to result in economies of scope. Within this text,
the terms recombinable, combinable and cumulative are defined as follows:
Let S(X) denote the set of all permutations of X, and § € S(X) denote one
permutation of X. X is called recombinable it

IS #£X st. Iy =f(S). (16)

This means, it is possible to derive from one given source code at least one
new recombinant source code just by rearranging the code lines. This is
more or less a theoretical eventuality only, more likely (a part of) a source
code is combined with other/new code lines. Z € X is called combinable
with respect to W, if

AW £0 st [Ay=£(V), V={{ZUW}\ U} £0]. (17)

Software is aspatial, thus it is infinitely expansible and therefore nonrival:
once software is produced, it can be reproduced without any loss of quality
and the reproduction costs are virtually zero. But there are high development
and pre-launch testing costs (high first copy costs). These high sunk costs
combined with the low marginal costs lead to a subadditive cost function
(economies of scope do not necessarily support this, see Baumol 1977).

Software is a network good with direct and indirect network effects. As
software is data processing, there is an exchange of data. This exchange hap-
pens either with other software (applications and/or operating system) or
hardware or both, which requires compatibility. This implies that producers
have an incentive either to use the dominant standard or try to push their
own standard. Consequently a coordination problem arises: which standard
should be used, will it be proprietary or open? On the supply and the de-
mand side two different forms of network effects play a role. The first is the
so-called installed base effect, i.e. the utility increases with the total number
of users (producers and consumers). Second, there is a personal network ef-
fect (Westarp 2003), where the adoption decision is determined less by the
total numbers of users but by the adoption decisions in the personal net-
work. However, network effects are intimately connected with complemen-
tarity which “means that consumers in these markets are shopping for systems
[...] rather than individual products” (Shy 2001, p 2, emph. in original), and
modularity (even of parts of software) plays an important role (Weber 2004,
pp 172 ff; Langlois 2002, pp 22 f). A necessary condition for ‘complementar-
ity’ and ‘modularity’ is compatibility.

This leads to another characteristic of software, for which compatibiliry
and combinability are necessary (but not sufficient) conditions: If X is com-
binable and V' is compatible to X, then X can be cumulative. X is cumu-
lative, if V itself is part of the new X", i.e. X is called cumulative with

respect to W, if 3W £ 0 such that
[Fy=/(V), V=HZUWN U} £0A[Z,V S X™] (18)

Software is an information good because the source code (the system of
algorithms) is information, i.e. a human-readable recipe: software is a sys-
tem of instructions for the data processing. Thus, every kind of software
can be described as algorithms forming a logical construction, build to per-
form one or several task(s). While distinguishing information from knowl-
edge Dost points out that algorithms are information (Dosi 1996, p 84). But
software differs from other information goods, as the average consumer does
not care about the information but merely about the impact (for example if
one uses an email-client program, one wants to receive and send emails but
(mostly) does not want to read the source code). This explains why soft-
ware is an information good that can be sold in a state users can not read
the information: proprietary software is typically given away only in state
of (only machine-readable) binary codes and therefore the information is
‘closed’. Hence within this paper the term closed source software (CSS) is
used instead of ‘proprietary software’.

3.2 Software as a Non- and Anti-Scarce Ressource

Due to the characteristics of software, namely being recombinant and aspa-
tial, a source code is a non-scarce ressource. Obviously there is no rivalry in
consumption, but there is also no rivalry in production:

(1) Because of virtual zero reproduction costs, a given first copy X is a
non-scarce resource for producing 7 + 1 copies. X can be copied with-
out any loss of quality, thus y := ‘copying’ | [X™* = X |A[Y™® =Y.

(i) Because of lack of physical abrasion and being combinable, a given
source code X is a non-scarce resource for further software develop-
ment. X can be used (even in parts) as input stock in developing first-
copies of new, derived software product:* y = f(V) | [X"™® =X] A

*Because of this there are whole catalogs of complete elements of programs (Grohn 1999,
p 5) and a distinct programming approach—the so-called component-based software
engineering—emerged. This approach also includes the re-use of software components
across producers (Romberg 2003, pp 253 ff.).

10

[y =Y].

(ii1) Because of software is an information good, a given source code X is

a non-scarce resource for transfer of ideas and learning, thus knowl-
edge spillover. A source code can be interpreted as a list of program-
ming solutions. For a new software project, several solutions provided
by existing source code might be useful and can be used in sense of a
transfer of ideas and concepts even from one programming language
to another. But also without an analogous transfer of ideas, reading a
source code of interest can be beneficial for a software engineer, as one
can learn from it and thereby improve programming skills. Hence,
for all ‘applications’ y that are transfer of ideas or learning, applies
y=f(Z)| X" = X]A[Y™* = Y],

Thus, a source code is a non-scarce ressource. Furthermore, software is an
‘at least non-scarce ressource’, as there is not only non-rivalry in use, but to
some extent even anti-rivalry® in use, hence it is a anti-scarce ressonrce

(iv)

)

Because of the importance of standards and network effects, software is
anetwork good with respect to the supply side as well as to the demand
side (e.g. see White et al. 2004, Kooths et al. 2003, Grohn 1999, Gandal
1994). If X is a network good regarding a set of ‘network applications’
y"® €Y, then X is an anti-scarce resource with respect to y"®:

Yy | [Y™ 5 Y]A[X™ D X] of. 8)

This is true for all network goods, network effects respectively. One
intuitive example is a network of telephone wires: The more users plug
in to the network, the more applications (‘call person A’) are possible.

Because of cumulativenes, there is anti rivalry in use of a source code:
If X is cumulative with respect to any W e W, V = {{ZUW}\ U},
then X is an anti-scarce resource with respect to W:

YW eW [{[3y = f(V)IA[Z, VS X"} by (18)

>Compare the following also with Weber (2004, pp 153 ff.), where one can find similar
thoughts, Weber uses the term ‘antirivalness’.

11

= [(VZX)AV CX™)] A [(y ¢ Y)N(y € Y™)]
= Vy=F(V)|[X™ DX]A[Y™(X"™) 5 Y(X)] cf. (8)

If a software engineer further develops a module—e.g. because of own
needs—others can benefit from this improvement as long as the new
piece of source code is still compatible and the new ‘module’ is imple-
mented in, and improves users’ software systems. Thus, a source code
is a potential input stock for further software development, where the
new output is (potentially) another incorporable module for the soft-
ware system and at the same time is again (potential) input stock that
lowers further software development costs, where the result again can
be implemented, and so on.

4 Copyright and the Non- and Anti-Scarce Resource
Software

The Coase Theorem (Coase 1960) tells, that if transaction costs are zero,
external effects are perfectly internalized and the allocation of resources does
not depend on the distribution of property rights (PRs). Hence, in a world
with transaction costs PRs—just as any institution—‘matter’, and the role of
PRs is to internalize external effects as good as possible. Hence this section is
about the role of (I)PRs with respect to a non- and anti-scarce resource. As the
paper focuses on the resource software (source code), this section is about the
role of copyright based licenses, because software is traditionally protected
by copyright law (Graham & Somaya 2004, p 269). and the software license
agreements define the transfer of the rights.

4.1 Optimal Allocation and Optimal Licenses

In this section I argue, that there exists an optimal allocation of rights regard-
ing non- and anti-rival applications, and optimal licensees can be defined:

As software has a subadditive production function, the provision of soft-
ware is an example of a so-called ‘natural monopoly’ (Baumol 1977). With
respect to the non-rival applications it is about a private provision of a good

12

without rivalry in use, hence a club good story. It is well known from stan-
dard micro-economics, that a commodity without rivalry in use should be
supplied, if the sum over each individual’s willingness pays (W7P) at least
covers the total costs (C), hence if Z;”:l WTP; > C, with m agents.

Let’s assume, that there is a finite number of applications yoev,i=
[1...7], and each of the 7 applications is traded in one market each. It is also
assumed, that

(i) the owner of the resource can price discriminate, such that each agent
pays an individual price for the application i denoted by ?;

and

(i1) each of the n-markets is a contestable market, such that the incumbent
has to choose the lowest price-vector covering the costs.®

This yields

Zp]%:ci,p;iSWTp]%, Vi=[1...n]¥j=[1...m] (19

=1

with C" is the portion of y* of the (First-Copy) costs of Y. Obviously this is
a welfare maximizing private provision of the resource.

Additionally, anti-rival applications—the rights to use the anti-rival appli-
cations respectively—can be allocated optimal as well: It is known from net-
work theory, that ownership can internalize network effects, because if it is
possible to price every single plug-in, the network effects can perfectly be
internalized by dynamic, i.e. individual price discrimination that takes into
account the marginal benefits of adoption (Liebowitz & Margolis 2002, 1994,
Katz & Shapiro 1994). Thus, optimal internalization requires perfect price
discrimination with respect to adoption, hence each adoption must be traded
separately. This can be applied to any kind of positive feedback mechanism in

0Of course, assuming perfect contestable markets in context of software seems to be a quite
problematic assumption. But the argument does not change, if one allows market power:
in this case the monopolist is able to gain an extra profit, but as the monopolist is doing
perfect price discrimination, welfare is maximized also in this case. Hence the contestable-
market-assumption is not a critical one in the context of the argument, but it simplifies
the argument.

13

use. Thus, regarding to the model of this section, it is again sufficient, that
the source code owner can perfectly price discriminate, the result is a welfare
maximizing allocation.

Hence, there are 7 markets where the y’s are traded, and 7 agents paying
a price p; > 0 for each y' € Y (with pj‘f = 0 implies that agent ; has a zero
WTP for application i and hence does not buy it at all). Therefore one can
represent the whole economy with the payment matrix P given by

1 n

Py - P
P = y (20)
1

with each market represented by a column. The payment structure of an
agent is given by the corresponding row and can be writtenasp; = (p} yeens p]”)

Additionally, one can represent the complete allocation with one single

matrix: Let A be a n X m matrix with af = yl/. Due to (19) we have y{ =

1 < p{ > 0 and ylf =0 else. For example in case of 7 =5 and m =4 one
possible allocation is given by

1 0001
11010

A= 01110 @)
1011 o0

Assumed, that it makes sense to write a license agreement that covers a set
of applications instead of trading each application separately, then this license
agreement is optimal if it transfers PRs to agent z such that all applications
are covered the agent would pay a positive price for:

h;: X —{y'| p;ﬁ > 0}. 2)

The price for this license agreement is given by

p=2.0i=(p}ssp)- 17, (23)
=1

14

with 17 is the transpose of the one-vector.

1o sum up: One can define the welfare maximal allocation of non- and
anti-rival applications, and a perfect market with perfect price-discrimination
would lead to this allocation. Based on this, optimal defined, copyright based
licensee agreements can be defined, hence an optimal allocation of PRs is
theoretically possible as well.

4.2 Ex Ante Transaction Costs and Incomplete Knowledge

As mentioned above, transaction costs and incomplete knowledge gives rea-
son to the fact, that PRs are traded. In this section it is argued, that neither
limits in market trading because of ex ante transaction costs, nor incomplete
knowledge can reason a crucial internalization problem such that governance
structures have to be build.

4.2.1 Incomplete Knowledge

Incomplete knowledge gives a good reason why PRs are defined and traded
(see also p 7), because if agents only know Y/ C Y it makes sense to trade
‘rules’ rather than applications. Regarding the question of crucial limits of
market allocation of optimal defined PRs, the important point is, that in-
complete knowledge changes the standard market game into a Bayesian mar-
ket game, but nothing more. This is now a case of Bayesian rationality with
the agents defining, trading and pricing the rights optimally based on their
subjective expectations regarding Y. Without going into details regarding the
specific characteristics of markets with Bayesian probabilities, one can con-
clude, that incomplete knowledge is no good reason to state a fundamental
problem with the market based allocation of PRs. Additionally, one of the
basic functions of markets is to create new knowledge (Hayek) by rewarding
innovative use of resources, and PRs enable innovators to appropriate such
returns.

4.2.2 Ex Ante Transaction Costs and Limits of Internalizability

Next argument could be, that ex ante transaction costs (search and bargaining
costs) inhibit optimal internalization via proper defined PRs, as there is a lack
of internalizability:

15

Whereas a new network member causes an (more or less countable) in-
crease of the value of the network only once and exactly at the moment of
plug-in, in order to internalize the positive effects caused by the the cumu-
lative effects described in item (v) one would have to be able to provide the
engineer a benefit each time the new source code—the new module—is incor-
porated in someone’s software system. Obviously, transaction costs inhibit
such an internalization, especially when it is about only (very) small steps in
improvement and little changes, thus small step cumulative development. In
the case of knowledge spillovers described in (ii1), it is even more obvious,
that neither the point of time nor the frequency of future value creation is
known. The moment of ‘adoption’ that causes knowledge spillovers is hard
to observe and moreover the value of the ‘adoption’ is hard to evaluate as the
results are increased skills that might lead to better future performance.

Hence, the economic value of this increased performance as well as future
cumulative effects are obviously hard to measure ex ante, especially in the
context of innovations, because “as Arrow himself pointed out long ago, if
an innovation is truly an innovation it is impossible for a finite observer to
precisely forecast it.” (Dosi 1996, p 84). However, one can again argue, that it
is sufficient if individuals are able to form subjective expectations regarding
the future benefit of the knowledge, just like in case of a reference book or
textbook for example.

Thus, there might be a lack of internalization because of lack of internaliz-
ability. This lack of internalization, thus the existence of positive externalities
leads to too little of the relevant activity as the social benefit is greater than
the private benefit. That means, if IPRs fail to some extent to internalize
external effects with respect to source code, one can postulate market failure
to some extent regarding this issue. But the degree of this ‘market failure’ is
to some extend limited.

Anyhow, there is another problem: In order to be able in general to in-
ternalize the external effects, IPRs must be able to fence, i.e. to corral the
effect, in order to be able to control. But regarding the non-internalizable
positive external effects discussed in this paper, the corralling effect becomes
a problem: Regarding some kinds of positive externalities, due to transaction
costs, IPRs like copyrights do not only fail to internalize but can also inhibit
those positive effects, if they fence it. The latter gives (utilitarian) theoret-
ical justification for governmental limitation of the scope of IPRs: From a

16

natural right philosophy point of view—most prominently represented by
Locke (1698) and Kant (1798)"—one must give good reason why laws limit
the scope of intellectual property, thus why intellectual property law grants
protection only under certain conditions, that is to say the disclosure of the
underlying idea (or: information) and the termination of the exclusive rights
after a certain period of time.

However, this does not necessarily contradict individuals interest, as as it
might not cause real costs for the source code owner to forgoes such rights:
The costs of not internalized positive effects are costs in sense of missing
revenue, therefore in the following they will be called ‘indirect costs’. Let
Y C Y’ denote the set of applications an agent i can realize and/or trade,
can trade the corresponding IPRs respectively. The superscript zc indicates,
that this set is determined by transaction costs while the subscript 7 indicates
that this set also depends on individual ‘factors’, e.g. the access to necessary
resources, etc. To give an example: a student’s Y of a certain source code
might be smaller than Microsoft’s Y of the same source code.

First, the role of IPRs regarding non-scarce resources is defined: Assuming
that envy and (irrational) stinginess does not play a role, there is no reason
why an agent 7 should claim and/or not freely transfer the rights h that cause
no indirect costs:

h: X —> {570 ¢ }”}fitc | (ﬂytc e Yitc | €10 < O)} (24)

with ¢, , as the cross-price elasticity of y* € Y regarding j°.
This leads to the definition of the optimal IPRs with respect to a non-scarce
resource. The rights h that should be claimed is given by

hex — {5 eV luli ¢V @y evf|e,, >0 @5

Thus, IPRs regarding a non-scarce resource are defined in an optimal way, if
they protect (i) all applications agent i can realize and /or trade, and (ii) all
applications that are substitutes to any y € Y¢

Regarding the feedback-effects, the argument is basically the same. Addi-
tionally one has to take into account, that it can be rational not to claim ex-

"For a brief overview of utilitarian and non-utilitarian philosophical foundations of IPRs
see Menell (2000).

17

clusive PRs regarding some {5/" ¢Y |(Fyey|e
garding some j € Y if the benefits from the feedback effects (over)compensate
the costs. I will come back to this later.

Copyright is defined and works in a way, that protects the tradeable, hence
private internalizeable, effects, and forgoes the right for such positive effects,
that are not internalizeable. Doing so, it combines private (ex ante) incen-
tives to produce with the disclosure of the information (ex post efficiency)®,
as copyright does not protect the idea itself—the pure information—but its
expression. Thus, in the case of e.g. a copyright protected book the author
earns money from its publication, which is a disclosure of the ideas (or: infor-
mation). Thus, with increasing sales figures, the author earns more money
and the ideas of—the information within—that book diffuse, because every-
body who buys that book can read it.

Traditionally software is protected by copyright, but, when thousands of
hundreds of copies of copyright-protected proprietary software are sold, no
one gets the information, there is no information diffusion—because the soft-
ware is given away only as binary code. Since software is a exceptional in-
formation good, IPRs defined by copyright law are not able to relieve the
tension between ex post efficiency and ex ante incentive:

o > O)} and even re-

e If software should be sold for a positive price, it generally’ has to be
given away in the state of binary codes. This is the case of proprietary
or closed source software (CSS): there is no disclosure and no diffusion
of the information. But due to the price greater than zero the ex ante
incentive condition is fulfilled. Obviously, the information has to be
hidden in this case, one has to protect the source code in order to sell it

%In general, IPRs are designed, to find a balance between the positive and negative effects
of strong IPRs, that is to combine incentives for individuals to produce—the ex ante
incentive—with the disclosure of the information—the ex post efficiency (Cowan & Hari-
son 2001, Quah 2003, pp 16 f, 19 ff). Hence, patents do not protect the idea itself but its
application in form of machine, method or matter (patent) (Besen & Raskind 1991, p 12).
The right to be a temporary monopolist regarding the economic use of a novel technical
solution is bundled with the constraint to disclosure the information that stands behind
the innovation, as the technological solution has to be described in the patent specifica-
tion. The case of copyright is discussed in the text above.

*There exists some exceptions from this, especially when it is about high-specific single con-
tracts. But there are even some examples where the source code is delivered by default like
in case of the SAP R3 license (Bhnlein 2003, p 23).

18

for a positive price, because if the information/the source code would
be disclosed, the price would be zero.

e Contrary, to reach ex post efficiency the information has to be dis-
closed. But, as already mentioned above, free access to the source code
in practice implies a price equal to zero. This is the case of the so called
open source software!® (OSS): The source code—the information—of
open source software is ‘open’, therefore disclosed. If OSS is sold for
a positive price, it is always bundled with complementary goods like
hardware or service, OSS alone is always available for free (For more
details on those business models see e.g. Dahlander & Magnusson 2006,
Briigge et al. 2004, Leiteritz 2004).

Another aspect regarding IPRs and software is the discussion about the
so-called software patents (e.g. see Blind et al. 2005, Bessen & Hunt 20044,5,
Mundhenke 2004, Gallini 2002, Canfield 2006). But as the two production
modes open vs. closed source software exist in countries with and without
software patents, and because both are based on copyright law, this paper
focuses on copyright issues of software.

In addition to the well known result, that not (sufficiently) internalized
positive external effects lead to an underprovision, in case of source code,
the lack of internalizability leads to a too small group of beneficiaries as the
positive effects are “corralled”, and therefore to some extend inhibited. This
concerns knowledge spillovers as well as to cumulative activities. The reason
for this—to some extend already mentioned above—will be discussed in the
next section: the problem of not exclusively separable rights.

4.3 Ex Post Transaction Costs and the Problem of Not
Exclusively Separable Rights

Internalization of the positive externalities through ownership requires, that
the IPRs regarding software can corral (fence) the positive effects. In this
case, there is excludability combined with no rivalry in use of the positive

°The term “free/libre open source software (FLOSS) could be used instead, but as this paper
wants to point out the differences resulting from different use of intellectual property law,
terms ‘open’ source vs. ‘closed’ source software are preferred.

19

externalities. This case refers to club or toll good: anyone who wants to
participate has to join the club, and therefore has to pay a toll.

Obviously it makes no sense to claim non-enforceable IPRs, but it also
makes no sense to transfer rights, that are not exclusively separable: I call
a right a exclusively separable right, if the right holder is de facto only able
to do, what is covered by the right. Examples with respect to software are
the right to use a software without changing the source code and the right
to copy a software, as usually the transfer of such rights implies that the
software is given away only in state of binary codes, and in case of use only,
there is technical copy protection in addition. Hence, who ever receives such
rights is—at least to some extend—de facto not able to do things that are not
covered by the rights because of technical reasons. Thus, IPRs with respect
to software are exclusively separable at least if the applications covered by the
right do not imply the need for access to the source code.

In principle, there exist exclusively separable IPRs regarding applications
described in item (i) and (iv) (section 3.2 pp 10,11) as well as consumption
i.e. use software without changing the source code. Contrary to this, rights
regarding (iii) (knowledge spillover) and (v) (cumulativenes) are in principle
not exclusively separable. The applications of item (ii) are in between: the
existence of organizations like ‘code-sell.com’ proves that selling source code
is possible, although transaction costs!! might impede some market trans-
actions. However, the problem of defining exclusively separable IPRs with
respect to (iii) and (v) is, that such applications need access to the source
code. This implies the following: If one wants to trade rights that are opti-
mally designed, one has to grant access to the source code. This leads in a
sense to a club of source code users, and and this might affect other rights, as
problems with shirking and misuse can occur. The term shirking refers to
a performance that is lower than the agreed effort, thus, this refers to prob-

"This refers to transaction costs of the market in general but especially to problems of asym-
metric information, namely of hidden characteristics (Arrow’s information paradox) and
hidden action: The First refers to, that whenever information is to be traded, the so-called
information paradox occurs, as the buyer of information is not able to determine its value
before the transaction unless the vendor reveals the information. However, if the infor-
mation is revealed, there is no longer a motivation nor a necessity to actually purchase the
information. The latter is about the monitoring and control costs regarding the question
of unauthorized re-sell of information, source code respectively.

20

lems covered by e.g. principal agent theory or theories on team production
and collective action problems. The term misuse refers to the problem, that
the source code is used in a way that is not covered by the contract.
Transaction costs can cause shirking and misuse, thus may inhibit reach-
ing the optimal club size. A club owner normally offers only the usus of the
club-good, and often keeps a right of expulsion, that is to fetch back the usus
from members who did not comply with the rules But in our case there is a
de facto ‘dilution of the property rights’ (Picot et al. 2005, p 47): Although
the original owner of the source code might be still the formal owner—i.e.
formally still exclusively holds abusus, usus fructus, alienation right and the
right of expulsion—but in practical there is a dilution of the IPRs, because of
transaction costs: An increase of club members induce controls costs, thus
with a huge amount of members it is simply not possible anymore to con-
trol if some members re-use the source code for own purpose and/or re-sell
the code. The latter gives reason to the fact, that a right to expulse is not
enforceable in groups with (too) many members. Hence, with an increase of
‘cooperation-club’ members c. p. the feasibility of shirking increases as polic-
ing and enforcement costs increase. Figure 1 depicts this problem: With in-
creasing number of members, transaction costs (7C) increase. Assumed, that
the owner of the resource would first trades with the agent offering the high-
est price, the m agents are arranged by the price they are willing to pay.
Hence, the returns as a function of club members R = f(m) is concave. The
optimal number of members is indicated by the dotted line. It is easy to see,
that if transaction costs are high, the optimal number is small, (maybe zero).
Some policing and enforcement costs as well as bargaining and decision
costs c. p. decrease with the decrease of specificity of the cooperation contract,
but a decrease of specificity c. p. increases feasibility of shirking. The first part
of this logic is shown in figure 2: the transaction costs decrease with decrease
of specificity i.e. the increase of set of allowed applications, simply because
if one allows every possible application one does not have to control any-
thing. Additionally the price one can get from selling somebody a licensee
agreement would be maximal if this licensee would allow every possible ap-
plication. (Notice, that for the argument it is irrelevant whether one assumes
that the transaction cost curve is inverse U-shaped or strictly decreasing.) Of
course, a decrease of specificity c. p. increases feasibility of shirking. But the
set of applications an agents de facto can use, and hence the price an agent

21

TC
e TC

"' max

- ————

\J

Figure 1: Transaction Costs and Limits of Size (Members)

will be willing to pay for an complete unspecific contract, is determined by
the agent’s set of realizeable applications (Y¥). This implies, if the resource
owner would know each Y, optimal PR-allocation would be reached again.

Obviously the problem is that the agents do not know other agent’s Y.
Hence, they do not know the #ype of the other agents, and this leads to a
problem well known as ‘adverse selection’ (because Y determines ex post
(hidden) action of agent 7, the ex post problem can be transferred to an ex
ante information problem): As there are incentives to indicate a smaller Y*¢
than the real one, because this would lead to a smaller price, the agents will
not truly indicate their Y. The owner of the source code might know—
or has a sufficiently correct idea about—the distribution of Y, the average

set of realizeable and tradeable applications)_/l.“ respectively. But given the

corresponding average price, at least some agents with Y <)_’i“ won’t pay
for this, and leave the market in a sense. This increases the average set of
applications and therefore the average price, and so on, and so on. This yields
the well-known result of adverse selection in insurance markets: At the end,

22

C

A
|
|
|
|
|
|
|
|
|

max

AN

\J

|
|
|
|
|
|
|
\l/
Y
Figure 2: Transaction Costs and Specification of Contract

only the agent with the largest set of applications will rest in the market.

Although this version of the paper does not yet provide a complete an-
alytical model of the limits of market trading of not exclusively separable
rights, the intuition was explained: Because of ex post transaction costs, PRs
that imply access to the source code are de facto not exclusively separable.
This limits the market allocation of the PRs. Next step is to ask, what kind
of governance structures can be build, as answer to the problem of dilution
of exclusive ownerhip because of the problem of not exclusively separable
rights. The following section is about this.

5 Two Co-Existing Production Modes: OSS vs. CSS

Based on the analysis above, this section focuses on the principles of CSS and
OSS each, but first describes the different licenses.

23

5.1 CSS vs. OSS Licenses

The existing software licenses can be classified by the scope of transferred
rights (for the following see Hawkins 2004, p 107; Bohnlein, 2003, pp 19 ff;
Niittgens & Tesei, 2000, p 11):

usus | usus fructus | abusus | alienation right
CSS + + - 8)
OSS (viral license) + + n 1)
OSS (public license) | + + + n

Table 1: The Transfer of Usus, Usus Fructus, Abusus and Alienation Right

e CSS licenses are exclusive as they are based on the principle of closeness,
i.e. a user (licensee) of CSS typically receives only the usus and (maybe
restricted) usus fructus from the licenser, and the alienation right is not
transferred or restricted (see table 1).

e OSS licenses are inclusive as they are based on the principle of open-
ness, i.e. the licenser offers his license to anybody who wants it and
OSS licenses in principle transfer the whole set of rights, although they
differ in the scope of transferred rights: Public OSS licenses—like the
BSD license—do not restrict the use of the software and the software’s
source code in any way, whereas viral licenses—like the GPL—differ
in the alienation rights, as the right to redistribute is restricted: Any
turther developed software as well any derived work must be licensed
as a whole under the same OSS license (see table 1). Hence, OSS is not
software without any property, as e.g. the “GPL contains provisions
covering property rights and licensing. It is based on copyright prin-
ciples (...) [and] does not, as often misperceived, remove copyright
protection” (Gehring 2006, pp 62, 70)!2. One can interpret an OSS li-
cense as being a contract that offers everybody the whole set of rights

2Thus it is to some extend misleading, that the counterpiece of OSS only is called proprietary
software, as ‘proprietary’ comes from the latin terms proprietarius and proprietas and its
legal meaning is ‘protected by copyrights’. Thus, some observers refer to the term closed
source software (CSS) instead of proprietary software and so does the author of this paper.

24

while the possible constraint, thus possible limitation of the alienation
right, must be considered only at the moment of redistribution.

The different kinds of software licenses fit the theory of not exclusively sep-
arable rights: CSS licenses, that are based on the principle of exclusive own-
ership, trade only such IPRs, that are exclusively separable, and do not allow
access to the source code. OSS licenses in contrast offer the complete set of
rights, as they allow access to the source code.

The software licenses reflect two different principles of OSS and CSS In
the next two sections, this two different principles, i.e. the two different ‘so-
lutions’, CSS and OSS are further examined.

5.2 The Principle of CSS

One solution to solve the ‘dilution-of-control’-problem could be to increase
control by adding a second set of rules, thus to build a governance struc-
ture that ensures control, i.e. build a ‘irm’. With a software firm, the effects
are internalized, as the firm owner does not only own X but also exclusively
owns X ™. Additionally to the cumulativenes aspects, the benefits of knowl-
edge spillovers are also internalized, at least as long the employee work for
the firm. But building a firm is not costless and has its limits as one can not
include everybody who would have been able to submit something. Thus,
with respect to the maximal possible benefits from knowledge spillovers and
cumulativenes effects, a firm can not reach optimal club size.

However, CSS is based on the principle to maximize exclusive rights. With
exclusive rights it is possible to exclusively split coordination from residual
rights, thus build a firm with a division of management and ownership. It
is possible to produce software as a coordinated work of several software
developers, who are employees, thus their role is defined by a employment
contract and the employment contract contains a paragraph that makes sure,
that all the possible copyrights are transferred to the company, thus at the
end of the day they do not own any IPRs concerning the source code.

As developing software is more like finding solutions for a problem one
may not be able to conclude directly from the output the effort of the de-
veloper. Software is therefore developed in a principal-agent-structure, as the
principal defines certain aims and arranges a team of programmers, testers,

25

etc., but can barely monitor the effort and/or performance of these agents,
because of monitoring costs (Pasche & von Engelhardt 2004, p 9), and well-
designed contracts are needed to reduce inefficiencies derives from this. Ad-
ditionally, of course, CSS firm can build cooperations to some extent, but as
described above, there are some limits. However, the concept of CSS—i.e.
the firm-solution—has its limit, i.e. can not reach the optimal level of inter-
nalization because in a world with transaction costs

(i) it is not possible to sell everybody the optimal individualized software
that fits perfectly his or her needs.

(i1) it is not possible to write an employment contract with everybody
who would have been able to do some cumulative activities.

(i) firms are not costless. This refers to hierarchy costs, e.g. induced by
the principal-agent problems described above.

To sum up: Firms are better than the market in solving the kind of control-
problems caused by asymmetric information described in section 4.3, but
they are not perfect in doing so, and are limited in their ability to create and
internalize some of the positive effects.

5.3 The Principle of OSS

Another possible solution is the following: Depending on Y it can be ratio-
nal, to forgo exclusive rights regarding X, if this implies the opportunity to
realize benefits from knowledge spillover and the cumulative feedback mech-
anism. I will focus on the latter mainly: Let’s assume, that shirking can—at
least to some extend—be avoided due to a mechanism that leads to a self in-
terest in contributing i.e. cumulatively adding source code. In this case, a
possible solution for the misuse problem is to allow more and combine this
with passive control rights. If potential contributors have an self-interest in
contributing, it is sufficient that a club owner has the right to decide whether
an offered contribution will be included or not, in order to achieve high qual-
ity of the collective output. This means, production does not need ‘active’
control rights—that is to give someone the order to do something—but ‘pas-
sive’ control rights—that is the right to decide whether something will be

26

included or not—is sufficient. This means, the amount of exclusive IPRs can
be minimized, thus a dilution of IPRs might play no role anymore.

As mentioned above, one can interpret OSS licenses as being quite general
and ‘open’ contracts. Thus, OSS licenses are very non-specific cooperation
contracts, designed in order to attract a large number of club members, and
as OSS licenses are not limited in time, they seem to be designed for a co-
operation with—at least potentially—infinite duration: At any time, anyone
can access the source code and use it however long, given that the possible
constraint, that is a possible limitation of the alienation right, is considered.

As OSS licenses are inclusive, with respect to the source code, it is not pos-
sible to hold exclusive rights, and therefore it is not possible to divide neither
consumers from producers, nor software developers from coordinators or di-
viding coordination and ownership. Everybody involved in the (production)
process holds the complete set of rights regarding the source code,' but the
licenses are combined with institutions that support the ownership and the
passive control rights of the different projects:

The different projects are open and permeable, but clear structured, thus
they can be labeled as being passive hierarchical organizations, as the basic
model of a OSS developing group is an example par excellance for coordina-
tion based on passive control rights: The basic organizational structure of
such OSS-Projects is often labeled the ‘onion layer’ model (see e.g. Jensen &
Scacchi 2007, Crowston et al. 2006, Wendel de Joode et al. 2003, pp 18,19):
The first, outmost layer consists of passive users, while in the second layer
one will find users who are more involved (writing bug-reports, testing new
(pre-)releases), and so on. At the core are developers who contribute most
of the code, have responsibilities and certain privileges. The core developers
oversee the design and evolution of the project and control it. It exist clear
rules about how one can move from the outermost layer into the core of the
project, e.g. one have to prove software development skills, reliability etc.
And, maybe most important, the core developers control—thus, manage—
the project by using passive control right, thus their (exclusive) right to de-
cide whether to accept or reject contributions (McGowan 2001, Wendel de

BIn case of viral licensees there is of course a limitation of the alienation right, but this
limitation affects everybody, thus all involved holds the same amount of limited alienation
right.

27

Joode et al. 2003, p 20). The passive control rights are enforced by using the
concept of ownership regarding the database in which the software is stored
and the name—thus, the trademark!*—of the project. This prevents cloning
of projects and supports the signalling function of the project’s name, thus
trademark.

Thus, OSS projects combine non-specific contracts regarding the source
code with project-clubs managed by passive control rights. The fact that OSS
licenses are inclusive can be interpreted as an pragmatic reaction to the dilu-
tion of exclusive IPRs regarding the source code. Public licenses are the most
radical in this context, whereas viral licenses limit the alienation right and
thereby (passively) exclude at least those who do not want to license their
products under such a license. But apart from that, contrary to the con-
cept represented by CSS, OSS stands for the concept of minimizing exclusive
rights. There is exclusive ownership only regarding the projects, that are
managed by passive control rights leading to a kind of decision hierarchies.

Hence, OSS-projects are based on the principle of minimized exclusive
ownership combined with passive control rights. This leads to two topics
to be examined: Ho does this kind of passive control work? And: Why do
economic agents have a self-interest in contributing to OSS-projects?

Given that OSS-projects have to compete with other projects as well as
with CSS-products, they have to survive in innovate competition, hence they
have to evolve sufficiently regarding quality and quantity (new features). This
leads to the question of the optimal accept-reject decision: If the core devel-
oper’s policy is to restrictive, then too little new source code is implemented,
hence the project evolves too slowly. Additionally if too many improvements
of too many contributors are rejected, the rejected code developers might
have incentives to ‘fork’, i.e. to establish and develop their own version. But
if the core developer’s policy is to less restrictive, then the quality of the
project growths to slow or even decrease. This kind of optimal accept-reject
policy problem is in general an optimal level of exclusively question: like in
any kind of exclusive clubs where the club members contribute something
to the club, there has to be found the optimal level of restriction (neither a

“E.g. Apache is a trademark of The Apache Software Foundation, KDE and K Desktop En-
vironment are trademarks of KDE e.V., Linux is a registered trademark of Linus Torvalds,
and so on (see www.apache.org, www.kde.org, www.linuxmark.org).

28

club everybody can join, nor the most exclusive club no one can get in, is
attractive).

Next question is, why do economic agents use OSS and contribute to OSS-
projects. To some extend this question is answered by the literature dealing
with theoretical and empirical research on the motives of open source soft-
ware developers, as understanding OSS developing is to analyze the motives
as well as the institutions. The motive related literature focuses more or less
on the intrinsic and extrinsic motives of individuals to contribute in OSS
projects. (An overview of this literature can be found in Rossi (2006, p 17 ff)
Franck & Jungwirth (2002), Mustonen (2001), Johnson (2001), Schiff (2002)
and Kooths et al. (2003); an additional online-collection can be found at
opensource.mit.edu.). Authors like Dahlander & Magnusson (2006), Rossi &
Bonaccorsi (2006), Lerner et al. (2006), Feller & Fitzgerald (2002), etc. discuss
questions related to firms and open source software. Without going into de-
tails, one can mention, that on the one hand reasons can be found why firms
use open source code, and on the other hand, why they contribute, which can
be a firm’s decision to publish (parts of) its source code as open source (e.g.
Baake & Wichmann 2004), support—even substitute—open source software
programs Mustonen (2005), engage 1n a project, etc.

The reasons why firms #se open source software can be subsumed by the
term ‘ressources’: using source code developed by others obviously reduces
the own developing costs, and using a certain open source software to build
a business model around can mean using a network standard for business.
But this does not explain why firms contribute, as obviously the costs are
minimized if they contribute nothing but use the given source code.

But why do individuals and firms have to contribute instead of just using
given source code? Why is shirking so surprisingly seldom? Contributing
can mean different things, from simply giving own developments to the com-
munity (on this, regarding embedded Linux, see Henkel 2006) up to getting
involved in projects.

Besides motives that are more or less based on ideology (“OSS is a good
thing, we have to support this” etc.)!® one can give four reasons why even a

Tt is questionable, whether ideological arguments/motives are stronger than ‘selfish’ mo-
tives in the context of OSS-based business models i.e. making money. See on this e.g.
Rossi & Bonaccorsi (2006)

29

‘selfish” economic agent contribute to OSS-projects:
(i) Contributing cause no real costs.
(i1) They are forced by the license and other institutions.
(i11) If reputation plays a role, then being part of a project is important.

(iv) Contributing source code is the only way to get at least some control
over the further development of the project.

It is rational for economic agents to contribute to a project source code that
they have developed anyway. They do so, as it causes no (or little) real costs
for them to give this code away. Hence, (i) refers to that it causes no real costs
to forgo the following rights: h: X — {f/" ¢)A’i“ |y e Yi e, < O)}

Additionally, the institutions of OSS support—and to some even guarantee—
the cumulative effect: Although one agent might be able to make money
selling further developed source (hence, it causes significant (indirect) costs
to give it away for free), licensees like the GPL force this agent to contribute
his work back. Hence the license force the agent to forgo rights that belong
oh: X — {5 eviu{j¢ve |y ev®|e,,>0)}} Inaddition
to this copyright-based institution, informal rules like the hacker ethic and
community norms (incl. the enforcement characteristics) also support this
cumulative effects, as at least some kind of contribution may be expected by
the community. Thus, social norms can play a role here, as breaking the rules
will be sanctioned by the community, that is stop cooperating or migrate to
other projects (Osterloh et al. 2001, p 16 f). However, if individual benefits
from using OSS (namely reduced developing costs) overcompensate the (in-
direct) costs, then OSS can make sense from an economic agent’s perspective.

But remember, that the passive control game with the optimal accept-reject
policy works only, if agents have a self-interest in being accepted. This leads
to the question regarding the underlying logic, explaining why individuals as
well as firms contribute actively. Only the last two points (iii) and (iv) can
explain, why it is important for the agents to get their source code imple-
mented, hence to be accepted:

Reputation in this context does not only refer to the ‘career argument’—
most prominently emphasized by Lerner & Tirole (2002)—but also to the

30

reputation of firms: It can be important that the firm contributed e.g. to
the Linux-kernel, as this might be a signal for (a) quality skills as well as
for (b) ‘going with the community rules’, if costumers prefere that: If it is
known that the firm z plays an active role in a certain OSS project, this
might increase the firm’s ability to acquire customers.

The last point is ‘control’, an incentive not covered yet by the literature.
The argument is as follows: If firms have a business model build on OSS, they
want to sell complementary goods. Thus, they have a crucial self-interest in
controlling the evolution of the relevant OSS-project. But if one does not
belong to the core developers, then the only way to to have a bearing on
the project is to submit improvements that are good enough to be accepted.
Hence, (iv) is not about adding features that are add-ons, but gettings things
implemented e.g. in the Linux Kernel. This leads to a topic, still to be ex-
amined in an analytical model: The economics of contributing, as a method
for indirect control over the future evolvement of a project. It would be in-
teresting to model this, as with more and more firms getting involved in the
‘OSS-game’, this indirect control issue will become more important for the
further development of OSS.

To sum up: OSS licenses are designed in order to create (or: enable), in-
ternalize and control the cumulative effects. Of course, this does not work
as nice as exclusively owned networks where the network effects are created
simply by plugging in, controlled simply because there is an exclusive owner
who has control over the (further development of the) network, and the net-
work effects can be internalized by the price mechanism. In case of OSS, the
positive cumulative effects are internalized by lowering (potential) develop-
ment costs, as any cumulative activity yields a new piece of source code (new
feature, a fixed bug,...) available for everybody. Of course—as there is no
such thing as a free lunch—there is a price to be paid for this, i.e. one has to
forgo exclusive rights, exclusive ownership respectively, as this is the neces-
sary condition to create the positive feedback effect. However, since today,
economic theory has paid surprisingly little attention to the question, how
the cumulative effects (and the OSS projects) are controlled.

31

6 Outlook

Still a lot of work has to be done. The arguments of section 4 and 5 have to be
presented in a more compact and formal way. Especially the interplay of pas-
sive control rights and self-interest of contributing actively because of the need
for (indirect) control of the project has to be modeled in a formal way. Of
course, Yi“ plays a role in this context. As YZ.“ also determines, whether OSS
or CSS is the more attractive strategy, this is close to the modeling of the in-
dividual OSS vs. CSS firm strategy decision. Each institutional arrangement
has its assets and drawbacks from a firm’s perspective. The value of a strat-
egy depends on the firm’s own ressources and relative position in the mar-
ket as well as on the traits and conducts of the other players (customers and
other firms). As each strategy corresponds to an institutional arrangement,
and as each firm’s decision is related to the other firms’ decisions, there is a
dynamical feedback in chosen institutional arrangements. Because of such
interdependencies and feedback-effects, one can expect to derive some inter-
sting dynamical results, and the approach offers the opportunity to model
endogenous institutional change, in its broadest sense, regarding the software
industry.

References
Aoki, M. (2001), Toward A Comparative Institutional Analysis, MIT Press.

Aoki, M. (2007), ‘Endogenizing institutions and institutional changes’, Journal of
Institutional Economics 3(01), 1-31.

Baake, P. & Wichmann, T. (2004), Open source software, competition and potential
entry., Berlecon Research Papers 5, Berlecon Research, Berlin.

Barzel, Y. (1997), Economic Analysis Of Property Rights, Cambridge Univ. Press,
Cambridge [u.a.].

Baumol, W. J. (1977), ‘On the proper cost tests for natural monopoly in a multi-
product industry’, American Economic Review 67(5), 809-22.

32

Benkler, Y. (2002), ‘Coase’s penguin, or, linux and the nature of firm’, Yale Law
Journal 112(3), 369-437.

Besen, S. M. & Raskind, L. J. (1991), ‘An introduction to the law and economics of
intellectual property’, Journal Of Economic Perspectives (1), 3-27.

Bessen, J. E. & Hunt, R. M. (20044), An empirical look at software patents, Working
papers, Federal Reserve Bank of Philadelphia.

Bessen, J. E. & Hunt, R. M. (20045), The software patent experiment, in OECD,
ed., ‘Patents, Innovation And Economic Performance’, OECD, Paris.

Blind, K., Edler, J. & Friedewald, M. (2005), Software Patents - Economic Impacts
And Policy Implications, Elgar, Cheltenham [u.a.].

Bohnlein, 1. (2003), Anwendung von Aspekten der Neuen Institutionendkonomik
auf Open Source Software. Produktion, Verfigungsrechte und Transaktion-
skosten - eine theoretische und empirische Untersuchung, Master’s thesis, Johann
Wolfgang Goethe-Universitit, Frankfurt am Main.

Brand, A. & Schmid, A. (2005), Koordination in einem Open Source-Projekt, Tech-
nical report.

Brousseau, E. (2004), Property rights in the digital space, iz E. Colombatto, ed.,
‘Companion To Economics Of Property Rights’, Edward Elgar, pp. 438-472.

Briigge, B., Harhoff, D., Picot, A., Creighton, O., Fiedler, M. & Henkel, J. (2004),
Open-Source-Software - Eine Okonomische und Technische Analyse, Springer, Berlin

[ua.].

Canfield, K. (2006), “The disclosure of source code in software patents: Should soft-
ware patents be open source?’, Columbia Science And Technology Law Review (6).

Coase, R. H. (1960), “The problem of social cost’, Journal of Law Economics 3, 1-44.

Cowan, R. & Harison, E. (2001), Protecting the digital endeavour. prospects for
intellectual property rights in the information society, Research Memoranda 28,
MERIT, Maastricht Economic Research Institute on Innovation and Technology,
Maastricht.

Crowston, K., Wei, K., Li, Q. & Howison, J. (2006), Core and periphery in
free/libre and open source software team communications, System Sciences:
HICCS (Hawaii International Conference) Proceedings, pp. 118a-118a.

33

Dahlander, L. & Magnusson, M. G. (2006), Business models and community rela-
tionships of open source software firms, iz J. B. Schroder & P. J. H., eds, “The
Economics Of Open Source Software Development’, Elsevier, pp. 111-130.

Davis, L. E. & North, D. C. (1971), Institutional Change and American Economic
Growth, University Press.

Demsetz, H. (1967), ‘“Towards a theory of property rights’, American Economic Re-
view (2), 347-359.

Dosi, G. (1996), The contribution of economic theory to the understanding of a
knowledge based economy, in OECD, ed., ‘Employment And Growth in The
Knowledge-Based Economy’, Paris, pp. 81-92.

Eggertsson, T. (1990), Economic Behavior And Institutions, Cambridge University
Press.

Engel, C. (2002), “Windows as an institution organizing the markets for applications
software’, Journal Of Institutional And Theoretical Economics (158), 155-162.

Feller, J. & Fitzgerald, B. (2002), Understanding Open Source Software Development,
Addison-Wesley.

Franck, E. & Jungwirth, C. (2001), Open versus Closed Source. Eine organisation-
sokonomische Betrachtung zum Wettbewerb der Betriebssysteme Windows und
Linux, Technical report.

URL: www.isu.unizh.ch /fuehrung /Dokumente /WorkingPaper /4full. pdf

Franck, E. & Jungwirth, C. (2002), ‘Das Open-Source-Phinomen jenseits des Gift-
Society-Mythos’, WiSt - Wirtschafiswissenschaftliches Studium 31(3), 124-129.

Furubotn, E. G. & Richter, R. (2005), Institutions And Economic Theory : The Con-
tribution Of The New Institutional Economics, Univ. Of Michigan Press.

Gallini, N. T. (2002), ‘The economics of patents: Lessons from recent u.s.
patent reform’, Journal Of Economic Perspectives 16(2), 131-154. available at
http:/ /ideas.repec.org/a/aca/jecper/v16y2002i2p131-154.html.

Gandal, N. (1994), ‘Hedonic price indexes for spreadsheets and an empirical test of
the network externalities hypothesis’, RAND Journal Of Economics (1), 160-170.

Garzarelli, G. (2003), Open source software and the economics of organization, In-
dustrial Organization 0304003, EconWPA.

34

Gehring, R. A. (2006), ‘The institutionalization of open source’, Poiesis & Praxis:
International Jouwrnal Of Technology Assessment And Ethics Of Science 4(1), 54-73.

Graham, S. & Somaya, D. (2004), The use of patents, copyrights and trademarks
in software: Evidence from litigation, iz OECD, ed., ‘Patents, Innovation And
Economic Performance’, OECD, Paris.

Grohn, A. (1999), Netzwerkeffekte und Wetthewerbspolitik. Eine Okonomische Anal-
yse Des Softwaremarktes, Mohr Siebeck, Tiibingen.

Hart, O. & Moore, J. (1990), ‘Property rights and the nature of the firm’, Journal
Of Political Economy 98(6), 1119-1158.

Hawkins, R. E. (2004), “The economics of open source software for a competitive
firm’, Netnomics 6(2), 103-117.

Heller, M. (1998), “The tragedy of the anticommons: Property in the transition from
marx to markets’, Harvard Law Review (3), 621-688.

Henkel, J. (2006), ‘Selective revealing in open innovation processes: The case of
embedded linux’, Research Policy 35(7), 953-969.

ensen, C. & Scacchi, W. (2007), Role migration and advancement processes in ossd
4 p
projects, International Conference On Software Engineering, To Appear (29),
Minneapolis, MN, USA.

Johnson, J. P. (2001), “‘Economics of open source software.’, Paper.

Kant, 1. (1798), Essays And Treatises On Moral, Political And Various Philosophical
Subjects, chapter ‘Of the Injustice of Counterfeiting Books’.

Katz, M. L. & Shapiro, C. (1994), ‘Systems competition and network effects. (sym-
posia network externalities)’, Journal Of Economic Perspectives, 8(2), 93-115.

Kooths, S., Langenfurth, M. & Kalwey, N. (2003), Open-Source Software: An Eco-
nomic Assessment, Vol. 4 of MICE Economic Research Studies, Muenster Institute
For Computational Economics, Miinster.

Langlois, R. N. (2002), ‘Modularity in technology and organization’, Journal Of
Economic Behavior & Organization 49(1), 19-37.

Leiteritz, R. (2004), Open-Source-Geschiftsmodelle, in R. A. Gehring & B. Lutter-
beck, eds, ‘Open Source Jahrbuch 2004°, Lehmanns Media, Berlin, pp. 139-169.

35

Lerner, J., Pathak, P. A. & Tirole, J. (2006), “The dynamics of open-source contrib-
utors’, The American Economic Review 96(2), 114-118.

Lerner, J. & Tirole, J. (2002), ‘Some simple economics on open source’, Journal Of
Industrial Economics 50(2), 197-234.

Lessig, L. (1999), Code And Other Laws Of Cyberspace, Basic Books, New York, NY.
Lessig, L. (2006), Code: Version 2.0, Basic Books.

Libecap, G. (2004), The effect of transaction costs in the definition and exchange of
property rights: Two cases from the american experience, in E. Colombatto, ed.,
‘Companion To Economics Of Property Rights’, Edward Elgar, pp. 438-472.

Libecap, G. D. (1989), Contracting for Property Rights, Cambridge University Press.

Liebowitz, S. J. & Margolis, S. E. (1994), ‘Network externality: An uncommon
tragedy.’, Journal Of Economic Perspectives 8(2), 133-150.

Liebowitz, S. J. & Margolis, S. E. (2002), Network effects, in M. Cave, S. Majum-
dar & 1. Vogelsang, eds, ‘Handbook Of Telecommunications Economics’, Vol. 1,
pp- 76-94.

Locke, J. (1698), Two Treatises On Government.

McGowan, D. (2001), “The legal implications of open source software’, llinois Law
Review (1), 241-304.

Menell, P. S. (2000), Intellectual property: General theories, in B. Bouckaert &
G. De Geest, eds, ‘Encyclopedia Of Law And Economics, Volume II. Civil Law
And Economics’, Edward Elgar, Cheltenham.

Mundhenke, J. (2004), ‘Chancen und Risiken von Softwarepatenten’, Die
Weltwirtschaft (4), 417-438.

Mustonen, M. (2005), “When does a firm support substitute open source program-
ming?’, Journal Of Economics & Management Strategy (1), 121-139.

Mustonen, M., ed. (2001), Copyleft - The Economics Of Linux And Other Open Source
Software., University Of Helsinki.

Niittgens, M. & Tesei, E. (2000), Open Source: Marktmodelle und Netzwerke,
Veroffentlichungen des Instituts fiir Wirtschaftsinformatik, Saarbriicken.

36

Osterloh, M., Rota, S. & von Wartburg, M. (2001), Open source - new rules in
software development, Technical report.

Pasche, M. & von Engelhardt, S. (2004), Volkswirtschaftliche Aspekte der Open-
Source-Softwareentwicklung, Jenaer schriften zur wirtschaftswissenschaft.

Picot, A., Dietl, H. & Franck, E. (2005), Organisation: eine okonomische Perspektive,
4., {iiberarb. und erw. aufl edn, Schiffer-Poeschel.

Powell, W. (1996), Weder Markt noch Hierarchie: Netzwerkartige Organisations-
Formen, in P. Kenis & V. Schneider, eds, ‘Organisation Und Netzwerk - Insti-
tutionelle Steuerung in Wirtschaft Und Politik’, Campus-Verl., Frankfurt/Main

[ua.].

Quah, D. (2003), Digital goods and the new economy, CEP Discussion Papers 563,
London School of Economics, London.

Romberg, T. (2003), Herstelleriibergreifende Wiederverwendung von Kom-
ponenten, iz ‘Handbuch Zur Komponentenbasierten Softwareentwick-
lung’, Frauenhofer-Institut Fiir Experimentelles Software Engineering /
Forschungszentrum Informatik.

Rossi, C. & Bonaccorsi, A. (2006), Intrinsic motivations and profit-oriented firms in
open source software: Do firms practise what they preach?, in J. B. Schroder &
P.J. H., eds, “The Economics Of Open Source Software Development’, Elsevier,
pp- 84-109.

Rossi, M. A. (2006), Decoding the free/open source software puzzle: A survey of
theoretical and empirical contributions, 7 J. Bitzer & P. Schroder, eds, “The Eco-
nomics Of Open Source Software Development’, Elsevier, pp. 15-55.

Schiff, A. (2002), “The economics of open source software. a survey of the early
literature’, The Review Of Network Economics 1(1), 66 - 74.

Shy, O. (2001), The Economics Of Network Industries., Cambridge University Press,
Cambridge.

von Engelhardt, S. (2006), Die 6konomischen Eigenschaften von Software, Jenaer
Schriften zur Wirtschaftswissenschaft, A translated version will be published soon.

von Hippel, E. & Von Krogh, G. (2003), ‘Open source software and the "private-
collective" innovation model: Issues for organization science’, Organization Sci-
ence 14(2), 209-223.

37

Weber, S. (2004), The Success Of Open Source, Harvard University Press.

Wendel de Joode, R. V., Bruijn, J. A. d. d. & Eeten, M. J. G. V. (2003), Protecting The
Virtual Commons - Self-Organizing Open Source And Free Software Communities
And Innovative Intellectual Property Regimes, T.M.C. Asser Press, The Hague.

Westarp, F. v. (2003), Modeling Software Markets, Physica-Verlag, Heidelberg [u.a.].
Wey, C. (1999), Marktorganisation durch Standardisierung, Ed. Sigma, Berlin.

White, A. G., Abel, J. R., Berndt, E. R. & Monroe, C. W. (2004), Hedonic price
indexes for personal computer operating systems and productivity suites, NBER
Working Papers 10427, National Bureau of Economic Research, Inc.

38

